Comparing Traditional Statistics, Decision Tree Classification And Support Vector Machine Techniques For Financial Bankruptcy Prediction

نویسنده

  • Mu-Yen Chen
چکیده

Recently, several spectacular bankruptcies, including Fannie Mae, Freddie Mac, Washington Mutual, Merrill Lynch, and Lehman Brothers, have caught the world by surprise. To improve the accuracy of financial distress predictions, this research compares traditional statistical methods (i.e., linear discriminant analysis, logistic regression), decision tree classification methods (i.e., C5.0, CART, CHAID, QUEST) and artificial neural network techniques (i.e., multi-layer perceptron, support vector machine) to distinguish their respective capabilities for predicting financial distress. The experimental results showed that the support vector machine (SVM) technique could be a more suitable method for predicting financial distress than traditional statistical or DT techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches

In this paper, we compare some traditional statistical methods for predicting financial distress to some more ‘‘unconventional’’ methods, such as decision tree classification, neural networks, and evolutionary computation techniques, using data collected from 200 Taiwan Stock Exchange Corporation (TSEC) listed companies. Empirical experiments were conducted using a total of 42 ratios including ...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

A hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements

Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...

متن کامل

Applying enhanced data mining approaches in predicting bank performance: A case of Taiwanese commercial banks

The prediction of bank performance is an important issue. The bad performance of banks may first result in bankruptcy, which is expected to influence the economics of the country eventually. Since the early 1970s, many researchers had already made predictions on such issues. However, until recent years, most of them have used traditional statistics to build the prediction model. Because of the ...

متن کامل

Comparison of Bankruptcy Prediction Models with Public Records and Firmographics

Many business operations and strategies rely on bankruptcy prediction. In this paper, we aim to study the impacts of public records and firmographics and predict the bankruptcy in a 12month-ahead period with using different classification models and adding values to traditionally used financial ratios. Univariate analysis shows the statistical association and significance of public records and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Intelligent Automation & Soft Computing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012